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Efficient Development of High Fidelity 
Structured Volume Grids for 
Hypersonic Flow Simulat ions 

Stephen J. Alter* 
NASA Langley Research Center Hampton, Virginia 23681-21 99 

A new technique for the control of grid line spacing and intersection angles of a 
structured volume grid, using elliptic partial differential equations (PDEs) is presented. 
Existing structured grid generation algorithms make use of source term hybridization 
to  provide control of grid lines, imposing orthogonality implicitly a t  the boundary and 
explicitly on the interior of the domain. A bridging function between the two types 
of grid line control is typically used to  blend the different orthogonality formulations. 
It is shown that utilizing such a bridging function with source term hybridization can 
result in the excessive use of computational resources and diminishes robustness. A new 
approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered 
as a replacement to  source term hybridization. The ALBTFI technique captures the 
essence of the desired grid controls while improving the convergence rate of the elliptic 
PDEs when compared with source term hybridization. Grid generation on a blunt cone 
and a Shuttle Orbiter is used t o  demonstrate and assess the ALBTFI technique, which is 
shown to be as much as 50% faster, more robust, and produces higher quality grids than 
source term hybridization. 
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Nomenclature 
Second derivative coefficients in the 
elliptic system of PDEs 
Decay rate coefficient for source term 
blending 
Distance between two points 
Stretching factor between two adjacent 
cells 
Cofactors of the coordinate 
transformation from the computational 
to  the physical domain 
TFI blending function for the 
C-,q-, and (-directions 
Bi-linear TFI blending function with 
exponential decay in the <-,q-, 
and (-directions 
Bi-quadratic TFI blending function 
with exponential decay in the 
&,q-, and [-directions 
Grid line intersection angle at a 
constant (-plane 
Grid line straightness measure 
Jacobian of the transformation 
Streamwise computational direction 
and index measured from nose to 
tail of body ranging from 1 to a 
maximum number of points 
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Circumferential computational 
direction and index from top to 
bottom of body ranging from 1 to a 
maximum number of points 
Computational direction and index 
normal to body surface ranging 
from 1 to a maximum number of points 
Incremental source term at face 1 
Source term controlling the 
cell sizes and angles &direction 
Source term controlling the 
cell sizes and angles 77-direction 
Source term controlling the 
cell sizes and angles c-direction 
Position vector of x, y, and z 
Univariate interpolation functions 
corresponding to the [-, v-, and 
<-directions 
Cartesian coordinates 
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Introduction 
There are several methods available to generate 

structured grids, from algebraic to partial differential 
equations (PDEs). The solution of an elliptic set of 
PDEs provides the most control over the grid line char- 
acter that can promote the development of high fidelity 
grids, in both spacing and grid line intersections. The 
most common elliptic PDE in use for structured grid 
generation is Poisson's equation. This equation pro- 
vides both smooth distributions of grid points which 
occur at simulated isothermal line intersections from 
the homogeneous portion (i.e., the Laplace equation), 
with control of the grid line character provided by the 
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particular solution from the source terms. 
Assumptions about grid line incidence and cell 

height at a boundary are used to develop source 
terms'-4 for the PDEs. Source terms that control these 
characteristics have been formulated for specific condi- 
tions. Hence, the effect they have on the grid can vary 
significantly. For example, the specifications for cell 
size and incidence angle posed by Steger and Soren- 
son' (S&S) are usually decayed into the interior of the 
domain, so that the Poisson equation will satisfy an 
extrema principal which is needed to prevent the over- 
lapping of grid lines. The grid line incidence controls 
of Thomas and Middlecoff4 (T&M) make some gross 
assumptions about the grid to obtain nearly orthogo- 
nal intersections on the interior. The dilemma is that 
neither produces enough control on the boundary and 
interior towards development of a high fidelity grid; 
characterized by minimal grid stretching and signifi- 
cant orthogonality at intersecting grid lines. Source 
terms available were unable to produce high fidelity 
grids because the S&S source terms have very little 
effect on the interior, while the T&M source terms 
have no guarantee of imposing an orthogonal charac- 
ter of the grid at a boundary. Early successes of the 
generation of high fidelity grids were achieved through 
the introduction of source term hybridization which 
combines the effects of S&S at a boundary with the 
effects of T&M on the interior. Source term hybridiza- 
tion is accomplished by decaying implicit source terms 
such as the S&S onto the interior, while exponentially 
adding explicit source terms such as the T&M. The 
intention was to provide the best attributes of both 
formulations of source terms. However, the coupling 
makes no accommodation for the undesired character- 
istics of both source term formulations such as conflicts 
for the directions for grid point movement between 
both source term formulations. This deficiency is usu- 
ally the root of many problems with source term hy- 
bridization. For example, the implicit source terms 
may impose a non-orthogonal character to the grid 
lines at a boundary, in contrast to the explicit source 
terms which are formulated by assuming orthogonality, 
which results in inconsistent state of source terms. The 
conflict in these conditions of the grid controls are then 
reflected by the inability of a grid generation solver 
to obtain converged solutions of the elliptic PDEs. 
Therefore, a more efficient mechanism is needed to 
couple the implicit characteristics of S&S with grid 
line intersection controls on the interior. 

This paper presents a new alternative to source 
term hybridization for the generation of high fidelity 
structured volume grids. The new approach, called 
Anisotropic Lagrange Based Trans-Finite Interpola- 
tion (ALBTFI) utilizes a multiple variable blending 
function to amalgamate the implicit source terms of 
S&S and H&W at all six faces of a computational 
domain onto the interior. The ALBTFI scheme, al- 

ready posed in two  dimension^,^ is extended to three 
dimensions and modified through the incorporation 
of exponential decay functions, while incorporating 
both S&S and H&W source terms, which improve ro- 
bustness of volumetric grid generation. Additionally, 
a different form of the PDEs, than White, is used. 
To verify the benefits of ALBTFI versus source term 
hybridization simple sphere cone and Space Shuttle 
Orbiter geometries are used to illustrate the improved 
efficiency, robustness and quality of the new approach. 

Grid Control for High Fidelity 
To consider the effect that a new modification has 

on the development of high fidelity structured grids, 
several issues need to be addressed. These include: 

[l] Mechanisms to control grid line character; 

[2]  quantification of quality; and 

[3] grid resolution as it affects the efficiency of per- 

Issues 1 and 2 are addressed below, while issue three 
is deferred to work to be presented in another paper. 
Though not exclusive, these attributes provide a basis 
for the construction of high fidelity structured volume 
grids. Mechanisms to control grid line character in an 
elliptic smoother can be decomposed into two different 
types of source terms; implicit and explicit. Implicit 
source terms apply a set of boundary conditions and 
update the source terms in the elliptic PDE until those 
conditions are achieved. Explicit source terms assume 
a specific boundary condition, which results in a set 
of source terms that are held constant throughout the 
convergence of the elliptic PDEs to a steady state so- 
lution. Measuring the quality of a grid enables the 
determination of the applicability of the chosen bound- 
ary conditions to obtain the desired grid fidelity. 

Assessing Grid Quality 
Grid quality is usually assessed using a variety of 

measures, as they relate to the problem being solved. 
Typically the extent of orthogonality, identified by 

forming CFD simulations. 

and a typical stretching is determined using the equa- 
tion 2, which serves as a template for the other com- 
putational directions. 

WKKr (la+ 7 I W )  
€< = ( 2 4  
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The orthogonality measure ranges from unity to  purely 
orthogonal grid line intersections to zero which repre- 
sent collapsed cells, and the stretching measure ranges 
from unity for uniform spacing to infinity for highly 
stretched grids. More specific restraints are placed 
on grid grid quality when considering hypersonic flow 
regimes. For hypersonic flow fields, where grid adap- 
tation is essential for the placement of grid densities to 
resolve boundary layer properties, and removal of grid 
points from the freestream region while preserving the 
outer bow shock location, grid line straightness in the 
body to shock direction improves the efficacy of grid 
adaptation. The body to  shock direction is typically 
used for grid adaptation because this direction is most 
efficient at  resolving both boundary layer properties 
as well as shock wave location. Curved grid lines in 
this direction tend to cause wave like patterns to be 
developed in the grid along the remaining computa- 
tional directions of the flow domain. The wave like 
patterns tend to reduce the accuracy of bow shock 
resolution, which leads to inaccurate computation of 
entropy across the shock wave and inaccurate flow sim- 
ulations. Hence, grid line straightness in the body to 
shock direction as monitored by 

(3) 4mar c 1% 
<=l 

is the third measure used to determine if a volume grid 
is usable for hypersonic flow simulations. 

Geometry for Method Assessment 

For the discussion of the techniques used to control 
grid quality a generic 8" half angle sphere-cone geome- 
try is used, and shown in figure 1, with computational 
coordinates and flow domain shown in figure 2. 

Fig. 1 Two view drawing of an 8 O  sphere-cone used 
for grid generation discussions and assessment of 
solution strategies 

Structured Volume Grid Smoothing Equations 

Elliptic PDEs are derived from the superposition of 
Poisson equations, which produces inherently smooth 
variations of isothermal line intersections, or grid lines 

Fig. 2 Three-dimensional limits of the flow domain 
with physical and computational directions noted, 
for an angle of attack. 

and grid points, and take the form of 

Equation 4 is not solved easily because determining the 
derivatives of the computational domain (C,v,C), where 
points are evenly spaced, in terms of the physical 
coordinates (z,y,z), where points are non-uniformly 
spaced, is difficult. By using a coordinate transforma- 
tion the following transformed Poisson System, written 
in vector form results: 

= -Jz(PF. + QF,, + RFi) 

where, 

T r' = [zy.] 

and 
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with, ization uses bi-linear blending functions given by 

The solution of these non-linear, non-homogeneous 
PDEs for the development of structured grids has been 
the focus of substantial and ongoing research. Some 
techniques are more viable than others, but each re- 
quires user specified conditions to determine a set of 
source terms for controlling the grid. Implicit source 
terms such as S&S and H&W are constructed by as- 
suming Dirichlet boundary conditions, cell sizes and 
grid line incidence angles at a boundary. The resulting 
source terms are updated as the solution of the elliptic 
PDEs converges, based on the current state of the ini- 
tial volume grid. Explicit source terms such as T&M 
are constructed by assuming orthogonal intersections 
of all grid lines which causes many terms in equation 5 
to be assumed to be zero, thus significantly reducing 
the complexity of the equation. Explicit source terms 
are computed prior to solving the elliptic PDEs and 
are held constant because they already assume an or- 
thogonal grid. By comparison to implicit source terms 
which are dependent on the boundary where they are 
formulated, explicit source terms are based on volu- 
metric assumptions. Hence, the source term in use 
at any face can differ from another boundary, but ex- 
plicit source terms of T&M use the same formulation 
throughout the computational domain. 

Solution Strategy 

Solving the system of elliptic PDEs for constructing 
structured volume grids can be done using a variety 
of textbook techniques, but each requires a lineariza- 
tion of equation 5. These equations are linearized 
by assuming the cofactors (aij), the source terms P,  
Q, and R, and the Jacobian of the transformation 
to be constants, computed based on the previous it- 
eration. An initial solution to the grid points is 
required for this linearization, and is typically pro- 
vided by Three-Dimensional Trans-Finite Interpola- 
tion5 (SDTFI). The SDTFI method for grid initial- 

mu=('-i f u = 1  I L = O  

@ u = ( ' - i  f j  w = l  w = o  

and, 

l - l m i n  

f = (  l m a z  - t m i n  

Cmaz - Cmin 

which are used in the SDTFI equation, 

F(l7 77, C) 

u=o 
1 

w=o 

u=o 

1 1  

u=o w=o 
1 1  

u=o w=o 
1 1 1  

u=o u=o w=o 

where, 
(0 * f = o  

* ( = l  

The value of u, w, and w, identify the limits of the 
computational directions such that when any are zero, 
the corresponding computational direction indicated 
is the minimum boundary. Likewise, when u, w, or w 
are unity, the opposing, or maximum limit, boundary 
is identified. 

Given an initial grid, the linearized PDEs are solved 
using a Point Implicit Successive Over Relaxation 
(PSOR) scheme. Judicious choice of the relaxation 
factor, w ,  can enable solution acceleration via over re- 
laxation. The w can be a constant, or based on some 
local optimal value.6 The optimal value to use is usu- 
ally derived by considering the fact that the PSOR re- 
duces the linearized version of equation 5 down to a set 
of ordinary differential equations (ODES). Assuming 
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a constant coefficient Jacobi matrix for the ODES only 
for estimating an optimal relaxation factor, the eigen- 
values for the elliptic system of linearized equations 
can be determined. Then the local optimal relaxation 
factor is based on the largest eigenvalue which charac- 
terizes the slowest rate to convergence of the system at 
the local point. Use of a constant coefficient matrix to 
approximate the system of PDEs towards optimal re- 
laxation implies that the grid can not have significant 
stretching, in order for the constant coefficient matrix 
assumption to be accurate. If a grid has uniform to 
moderately stretched grids, optimal relaxation can be 
used to accelerate solution convergence, an added ad- 
vantage to minimizing stretching at all boundaries of 
the computational domain. 

Traditional Techniques 

Traditionally, the elliptic PDEs are solved by initial- 
izing a grid with SDTFI, specifying boundary condi- 
tions, computing source terms at the boundary, prop- 
agating them onto the interior of the domain, then 
solving the elliptic PDEs for the specified conditions. 
The remaining issue in this process is which source 
terms to use and the blending of source terms onto 
the interior. As noted earlier, implicit source terms are 
computed at  the boundary and decayed onto the inte- 
rior, while explicit source terms are computed at the 
boundary and interpolated onto the interior such that 
P,  Q, and R exist at all points on the interior. Source 
term hybridization is the coupling of the implicit which 
can accurately impose cell size and incidence angle 
constraints at a boundary and explicit source terms 
which can impose grid line intersection control on the 
interior. A bridging function is then used to decay the 
implicit source terms from the boundary onto the inte- 
rior, while the explicit source terms are blended from 
complete control at the interior to no control at the 
b~undar i e s .~  This bridging is accomplished using 

where the implicit (Imp.) and explicit (Exp.) source 
terms are based on p(Z) with 1 identifying the face as 
given by 

5 OF 

and the volumetric explicit source term is formed by 
the same 3DTFI method used for grid initialization 

'fj,k 
1 1 

u=o 
1 

v=O 

w=o 

1 1  

u=o w=o 
1 1  

u=o w=o 
1 1 1  

u=o u=o w=o 

In source term hybridization the explicit source 
terms are always additive and dominant on the in- 
terior. At the boundary the implicit source terms are 
dominant. This blending scheme is one of the methods 
that exists in the 3DGRAPE/AL8 software, which is 
used to generate all the structured grids in this paper. 
To maintain consistency for the analysis of the gen- 
erated grids, and the solver performance, the source 
term decay rate /3l is identical for each face, a typical 
choice in practice. All computations are performed on 
a 270Mhz Silicon Graphics R12K machine with 32-bit 
precision. 

Using equation 11 to blend the source terms, volume 
grids were generated for the domain identified in fig- 
ure 2 by varying grid point movement relaxation from 
0.8 to 1.4 and source term decay rates from 0.05 to 
0.45. The grid point movement relaxation rates were 
chosen to span the effects of the PSOR from under 
relaxed to over relaxed. The source term decay rates 
were chosen to represent typical default values of 0.45 
used by many elliptic PDE solvers, down to 0.05 as 
the practical limit using source term hybridization for 
obtaining a converged solution to the elliptic PDEs. 
Utilizing S&S source terms to impose orthogonal grid 
line incidence at all boundaries except the and 
pole faces, the performance of the solver is tracked 
with the number of iterations to a converged state. 
Convergence of the point movement was chosen based 
on the precision accuracy of the root mean square of 
the update to all movement in the domain. For the 
SGI at 32-bit precision and the size of the geometry, 
this value is 1 ~ 1 0 - ~ .  Convergence of the source terms 
was selected to be 3 orders of magnitude difference 
between the largest source term and the root-mean 
square of the updates to the source terms.g Initially, 
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4 orders of magnitude difference was chosen to iden- 
tify source term convergence, but the PDE solver could 
not obtain this level of convergence in the source terms 
when using source term hybridization. Both grid point 
movement and source term convergence are used be- 
cause it is possible to advance the solution such that 
the point movement appears to be converged, but the 
source term corrections are still large. Setting w << 1 
may falsely imply grid points are not moving, but 
source term updates convergence is not yet obtained. 

The convergence criteria established above, resulted 
in the grid point movement and source term conver- 
gence performance shown in figures 3 and 4 for grid 
point movement and source term convergence, respec- 
tively. The time required for each iteration with 

9 3000 
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E 

e 2000 - 
E - 0 

c 

0 .- 

1000 - 

* wO.8 - 4- - w1.0 
-.-Q-.- w1.2 

t I 
OO L 0.1 0.2 0.3 0.4 0.5 

p, Source Term Decay Rate 

Fig. 3 Grid point movement convergence for 
source term hybridization. 

source term hybridization is 2.37 seconds. As antic- 
ipated, increasing the relaxation rate for grid point 
movement results in accelerated solution convergence. 
With the optimum relaxation factor, the least number 
of iterations to convergence is fairly consistent for most 
of the source term decay rates. Second, the implicit 
source terms tend to converge faster than the grid 
point movement, due to the smaller region required 
for convergence. Implicit source terms only need to 
be resolved near the boundary due to the decay rates, 
whereas the grid point movement needs to converge 
over the entire volume. 

Contrary to intuition, decreasing the decay rate of 
the source terms, thereby increasing the influence of 
the source terms, increases the rate of convergencelo 
of the grid point movement. It has long been assumed 
in the field of grid generation that decreasing the rate 
of decay of the source terms can cause solver diver- 
gence. Yet for the simple sphere-cone geometry shown 
here, the opposite occurs. This effect lays in the ap- 

900 
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p, Source Term Decay Rate 

5 

Fig. 4 
hybridization. 

Source term convergence for source term 

plication of the source terms. Basically, increasing the 
influence of the source terms increases the movement of 
more of the grid earlier in the iteration cycles. Hence, 
convergence is obtained at an increased rate. 

Most notable in these figures it the fact that the 
strongest influence source terms do not produce a so- 
lution for relaxation rates above 0.8 which indicates a 
significant deficiency; significant increases in grid point 
movement iterations are needed to obtain convergence. 
Strong influence of the source terms at the boundaries 
causes the explicit source terms to be overcome by 
the implicit source terms. The basic problem that has 
arisen is that explicit source terms are assuming or- 
thogonality, while the source terms at the boundary 
are not necessarily set to orthogonality. As a result, 
there are significant conflicts between the source terms 
that have to be resolved by the PDE solver. Evident 
by the increase in the number of iterations to con- 
vergence of the grid, is the work required to resolve 
the conflicts, where implicit source terms have a weak 
influence. Hence, with the trends established for in- 
creasing source term influence and relaxation rates, 
there is a limit of efficiency when using source term 
hybridization because lower relaxation rates require 
significant increases in iterations of the grid movement 
to convergence. This implies that in order to obtain 
convergence the user may use too small w to ensure 
convergence. 

Source term hybridization was designed to  improve 
grid quality control throughout the computational do- 
main. As such, representative structured volume grids 
are shown in figures 5 and 6. 

Based on visual inspection for ,f? ranging from 0.15 
to 0.45, representative i- and j-planes in the interior 
of the domain for a grid point movement relaxation 
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a) j3 = .15 

Planes at i = 65 for w = 1.0 for source term 

b) j3 = .45 

Fig. 5 
hybridization. 

rate of 1.0, the grid lines in the body-to-shock direc- 
tion are curved, the stretching is varying, and most 
importantly, the grids are not close to orthogonality 
on the interior of the domain. Again, this is due to 
the explicit source terms conflicting with the implicit 
source terms, which is evident by the weaker influ- 
ence implicit source terms where /3 = .45; the typical 
default value for implicit source term decay. For the 
stronger influence implicit source terms, the orthogo- 
nality is improved and curvature is reduced, but there 
still remains some skewness that could adversely af- 
fect body-to-shock direction grid adaptation, and the 
accuracy of a predicted flow field. 

These results also indicate a serious problem is 
emerging; the robustness of the scheme is diminished 
because the strong influence source terms are not con- 
verging for the grid point movement relaxation factor 
of 1.0 or higher. Fully converged solutions are not pos- 
sible at all the conditions specified, which indicates 
that the limit to using source term hybridization is 
easily reached for this simple sphere-cone shape. Thus 
there are considerable drawbacks to source term hy- 
bridizat ion. 

A New Technique 
Generating structured volume grids of high fidelity 

has been time consuming and difficult because of the 
techniques available for grid control. Although it may 
seem advantageous to attempt the negating of unde- 
sired characteristics, a scheme would have to be robust 
enough to handle different boundary types, orienta- 
tions, and quite possibly boundary topography. 

Alternatively, a scheme could be developed that 
would have the desired effects of angle control while 
maintaining cell size at the boundaries of the compu- 
tational domain, and reducing the time required to 

a) for j3 = .15 
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1 
b) j3 = .45 

Fig. 6 
hybridization. 

Planes at j = 65 for w = 1.0 for source term 

obtain a converged solution of the elliptic PDEs. In 
both the hybridization and any alternative method, 
angle control is imperative, but boundaries require an 
additional control for the cell size. This leads to the 
realization that decoupling the angle controls from the 
cell size controls may prove to be a worthwhile avenue 
of research to pursue. There are many mechanisms to 
decouple the source term controls, but in most cases 
the source terms have to work together towards the de- 
velopment of a grid. A approach for multiple variable, 
multiple function blending of data is Trans-Finite In- 
terpolation. Hence, a form of TFI is selected to do the 
blending of the implicit source terms at all faces such 
that cell sizes influence only the boundaries, and angle 
control influences all regions. This approach produces 
an anisotropic set of blending functions (Qu,,,,w and 
C2u,v,w) for equation 13. The simplest method to ac- 
complish the decoupling and achieve the anisotropy is 
to substitute the @u,v,w terms of equation 13 to the 
required source terms and use decayed interpolation 
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using linear Lagrange basis functions, yielding In equation 16, the R terms control the cell size and 
decays rapidly with the combination of a quadratic 

u = o  (14~)  interpolation coupled with an exponential decay func- 
u = l  tion, and the 9 terms control angles which decay at a 
v = o  slower rate. 
v = l  (14b) The anisotropic approach was used in two dimen- 

sions in prior work3 with only H&W source terms w = o  
with an elliptic PDE system that factored the Jaco- w = l  bian of the transformation out of the equation, and 

( 1 4 ~ )  

and quadratic Lagrange interpolation for the cell sizes 
with an exponential decay function, as given by 

u = o  
u = 1 (15a) 
u = 2  

v = o  
v = 1 (15b) 
v = 2  

w = o  
w = l(15c) 
w = 2  

where, 
50 =$- f = o  
6 1  3- I = '  2 

t 2  * f = 1  
In a Lagrange polynomial, linear interpolation re- 

quires two source terms, the beginning and ending 
values. However, quadratic blending requires three 
source terms, where the first and last are identical to 
the bi-linear and the middle is set to zero. Hence, the 
blending of the source term that controls cell size de- 
cays to zero on the interior (i.e., no control), from both 
ends of a specified direction, and no decay function is 
needed. Using equation 13 and applying the ALBTFI 
technique, the equation in use for the source terms 
controlling the [ direction is given by equation 16, as 
a stencil for the other source terms in the 17- and <- 
directions. 

Pa,j,k 
2 1 

u=o u=o 

w=o 
2 1  

u=o u=o 
1 1  

u=o w=o 
2 1  

u=o w=o 
2 1 1  

u=o u=o w=o 
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no decay functions. This prior work made use of a 
strongly implicit procedure (SIP) to obtain a conver- 
gent solution to the elliptic PDEs. An SOR method 
in prior work was unable to produce a converged so- 
lution because of the stiffness created by the H&W 
source terms. Choice of SIP or SOR solution meth- 
ods should not produce different grids, but will affect 
convergence. Instead of switching to the SIP solution 
technique in the present work, the PSOR method is 
retained for consistency with previous computations, 
because S&S source terms are being retained for or- 
thogonal grid line control. Recall that the S&S source 
terms are being applied at all faces except the pole 
boundary where no source term is used and the outer 
boundary where H&W source terms are used to im- 
pose non-orthogonal grid line incidence control. The 
current work incorporates the decay function to im- 
prove convergence using the PSOR by reducing the 
intensity of the H&W source terms; the source terms 
that proved difficult to use in prior work with SOR 
methods. The decoupling in the ALBTFI technique 
is tempered with the inclusion of a decay function in 
equations 14 and 15, a mechanism that aids conver- 
gence without the use of an SIP. Utilizing ALBTFI to 
generate the sphere-cone volume grid, with the same 
set of grid point relaxation rates and source term in- 
fluence as was used for the source term hybridization, 
the solver performance for grid point movement and 
source term convergence are shown in figures 7 and 8, 
respectively. 

The ALBTFI technique requires 0.33 sec- 
onds/iteration (14%) more than source term 
hybridization because the complexity of the blending 
function has increased significantly. By comparison to 
the hybridization strategy, several performance issues 
can be addressed. First, the number of iterations and 
the time required to obtain convergence of the elliptic 
PDEs is shown in table 1. For the strong influence 
of the source terms, where the best grid is usually 
produced, the time to convergence for the ALBTFI 
scheme is faster than the hybrid approach, because 
the hybrid approach did not produce a converged 
solution for the relaxation rate of unity. Source 
term convergence is much smoother for the ALBTFI 
method, faster in most cases, and the ALBTFI 
method is significantly more robust than the hybrid 
approach which is evident by the obtained conver- 
gence. During the implementation of the ALBTFI 
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method, a Jacobi iterative technique was attempted, 
but failed to converge for relaxation rates above 1.0, 
which is attributed to the stiffness of the scheme. 
Stiffness is suspect because the two dimensional solver 
used in prior work required an SIP to get a converged 
solution. When a Gauss-Seidel iterative technique was 
implemented in the current work, the results shown 
in this paper were obtained. Although the blending 
function has become much more complex, there is no 
need to  constantly difference the implicit and explicit 
source terms at a boundary, no need to compute 
T&M source terms, thereby significantly reducing 
the computer memory required. The performance of 
the elliptic PDE solver for the ALBTFI technique 
clearly indicates an improved convergence rate and 
significant robustness improvement. Comparing 

Table 1 Convergence performance measures for 
3DGRAPE/AL at a grid point movement relax- 
ation of w = 1.0 for hybridization and ALBTFI 
source term blending schemes. 

Blending Number CPU Factor 
Scheme of Time Decrease 

Iterations (seconds) Over Hybrid 
Hybrid - - - 

ALBTFI 968 2613.60 - 

(a) Strong influence of source terms (j3 = 0.05). 

Blending Number CPU Factor 
Scheme of Time Decrease 

Iterations (seconds) Over Hybrid 
Hybrid 2149 5093.13 1 .o 

ALBTFI 1495 4036.50 0.21 
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(b) Moderate influence of source terms (j3 = 0.25). 

Blending Number CPU Factor 
Scheme of Time Decrease 

Hybrid 3075 7287.75 1 .o 
Iterations (seconds) Over Hybrid 

ALBTFI 1791 4835.70 0.34 
(c) Weak influence of source terms (j3 = 0.45). 

the performance of source term hybridization and 
the ALBTFI technique illustrated in figure 9, the 
ALBTFI scheme is generally more efficient, but 
particularly more robust for ,O < 0.15. The Hybrid 
scheme shows comparable efficiency to the ALBTFI 
at /3 = 0.15, however, the hybrid scheme source terms 
do not converge for decay rates that result in the 
highest quality grids. Hence, the hybrid scheme is 
not as robust as the ALBTFI method. Also note 
that in order to do these comparisons, the source 
term convergence criteria had to be reduced by one 
order of magnitude. Sacrificing the extent to which a 
solution is converged typifies the reduced robustness 
of the source term hybridization. Representative 
planes from the structured volume grids produced 
with ALBTFI are shown in figures 10 and 11 for the 
resulting i- and j-plane grids, respectively. 

Evaluating the quality of the grids generated is dif- 
ficult because no single measure identifies the trades 
needed in grid line intersection, stretching, and body- 
to-shock direction grid adaptation. However, by using 
these types of measures, and considering the mini- 
mum average orthogonality and the maximum average 
stretching which are both planar dependent, and the 
minimum average straightness, a global measure can 
be constructed, as given by 

Omin@ 
GQ =- 

h a x  

Using this measure to quantify what can be visually in- 
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Fig. 9 Elliptic PDE solver performance measured 
in time to convergence for w = 1.0, grid point move- 
ment relaxation. 
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Fig. 11 Planes at j = 65 for w = 1.0 for ALBTFI. 

fore, ALBTFI can generate high fidelity grids more 
efficiently than the standard source term hybridiza- 
tion. 

1 ,  

a) p = .15 b) p = .45 

Fig. 10 Planes at i = 65 for w = 1.0 for ALBTFI. 

spected, figure 12 illustrates the grid quality measure, 

Inspection of the grids provides conclusive proof 
that the grid quality from the ALBTFI approach is 
indeed as good if not better than the source term 
hybridization, and also illustrates that even weak in- 
fluence of the implicit source terms can produce viable 
structured grids using ALBTFI. The ALBTFI method 
is more robust than the source term hybridization, 
based on the time required to obtain converged so- 
lutions, the extent of convergence of the source terms 
as noted by the sacrifice of the order of magnitude of 
source term corrections in order to do any comparison, 
and the quality of the volume grids produced. There- 

1 0.95 e 0.0.8 ALBTFI - & - w=l.OALBTFl 
--+.- 0 ~ 1 . 2  ALBTFI + 0 ~ 1 . 4  ALBTFI - f>- - 0=0pt ALBTFI 
- * * ~ - * * -  oi l  .O Hybrid 

m 

0.70 B 0.1 0.2 0.3 0.4 

$, Source Term Decay Rate 

Fig. 12 
term hybridization. 

Volume grid quality analysis using source 
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. 
Application to a Complex Shape 

Robustness and efficiency in the generation of high 
fidelity structured volume grids are improved by the 
ALBTFI scheme. To further test the robustness as 
compared with source term hybridization, a more com- 
plex geometry (Space Shuttle Orbiter) is examined 
with both source term controls. This volume grid 
has grid dimensions that are eight times larger than 
the sphere-cone used to evaluation of the ALBTFI 
technique, tighter spacings at the wall to simulate 
the generation of a viscous grid, and larger variations 
in grid stretching throughout the domain; significant 
complicating issues for grid generation. The same grid 
point movement relaxation factors and source term 
decay rates were used for grid construction, yet not 
all cases converged and grids were not produced, due 
to the complexity of the volume grid to be gener- 
ated. Boundary orthogonality was imposed on the 
faces that represent the wall, symmetry planes, and 
exit of the flow domain, while non-orthogonal angles 
were imposed at the outer boundary to reduce grid line 
curvature. Utilizing the same source term decay rates 
from all faces, and these boundary conditions, volume 
grids were generated. The most noticeable result from 
this grid generation was that the hybridization tech- 
nique never converged for either grid point movement 
or source terms, and a usable grid was not produced. 
The lack of convergence can be attributed to the orig- 
inal formulation of the T&M source terms which were 
designed for internal flows with simple cross-sectional 
shapes, as well as the conflicts between grid controls 
at the boundaries. However, the ALBTFI method did 
converge, and the performance of the volume grid gen- 
erator is illustrated in figures 13 and 14 for the grid 
point movement and source term convergence, respec- 
tively. 

Based on the performance of the ALBTFI technique 
within the 3DGRAPE/AL software, the time required 
to generate the grids is approximately 20.22 seconds 
per iteration, or 45 hours for fastest case, and 98 hours 
for the slowest. The fact that the ALBTFI technique 
converges, and illustrates the same trend for the fam- 
ily of curves of grid point movement relaxation where 
convergence is accelerated with increasing relaxation 
factor changes, is evidence of the robustness of this 
technique. However, based on the source term decay 
rate, the fastest convergence occurs for = 0.35. This 
may be attributed to the complexity of the volume grid 
boundaries and controls required to obtain a volume 
grid. Even though source term decay rates stronger 
than 0.25 did not meet convergence criteria, usable 
volume grids were produced. 

Visual inspection of the volume grids is not simple 
because of the density of the volume grid. Dimensions 
in the I- and J-direction were reduced by a factor of 4 
to improve the clarity of the visual inspections. Three 
dimensional surfaces for the I- and J-planes were ex- 
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Fig. 13 Grid point movement convergence for 
ALBTFI on a Space Shuttle Orbiter. 
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a Space Shuttle Orbiter. 

Source term convergence for ALBTFI on 

tracted according to the locations shown in figure 15. 
According to figure 16 for the I-plane and 17 for the 
J-plane, the stronger influence source terms produce 
straighter grid lines in the body to outer boundary 
direction, and tend to produce a longer propagation 
of orthogonality onto the interior. The I-plane illus- 
trated, is located just aft of the fuselage/wing intersec- 
tion, and shows that even though the grid is stretched 
in the cross-section, the stretching can be propagated, 
onto the interior which improves the quality of the 
grid for grid adaptation purposes. Additionally, the J- 
plane, which occurs along the water line of the vehicle, 
including the wing leading edge, illustrates that the 
grid maintains orthogonality through boundary layer 
region. These artifacts of the grid clearly indicate that 
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Fig. 15 
tracted for visualizing the grids produced. 

Locations where I- and J-planes were ex- 

a high fidelity grid can be produced for such a complex 
shape as the space shuttle orbiter. 

Conclusions 
The Anisotropic Lagrange Based Trans-Finite Inter- 

polation (ALBTFI) scheme is fully extended to three 
dimension to efficiently generate high fidelity grids 
with sufficient point density to resolve hypersonic flow 
field phenomenon. The technique is an alternate to 
source term hybridization, designed to control grid line 
intersections on the interior of a volume grid while 
maintaining an additional cell size constraint at the 
boundary. The ALBTFI scheme does not suffer from 
the problems encountered by source term hybridiza- 
tion such as source term conflicts and robustness, be- 
cause only the desired characteristics of the controlling 
source terms are used, whereas the source term hy- 
bridization combines both the desired features such as 
boundary and interior domain grid line control with 
undesirable features such as inconsistent grid line in- 
cidence specification of separately formulated source 
terms. 

The ALBTFI method offers numerous advantages 
over the typical source term hybridization by decou- 
pling the cell size controlling source terms at oppos- 
ing boundaries, and utilizing the entire domain for 
the blending, as opposed to blending boundary source 
terms to interior based source terms. The anisotropic 
nature of the ALBTFI method is derived from utiliz- 
ing bi-quadratic blending for the control of cell sizes 
and bi-linear control for angles. Bi-quadratic blending 
of the cell sizes decouples the cell size specification be- 
tween two opposing boundaries in the computational 
domain. Bi-linear blending of the angles maintains the 
straightest intersections between opposing boundaries, 
much like the effects that Thomas and Middlecoff 
(T&M) controls have. Since only the implicit source 
terms of Steger and Sorenson (S&S)  and Hilgenstock 
and White (H&W) are being used at the boundary of 
the flow domain, and no other interior source terms are 
used, the conflicts are eliminated, the time to conver- 

a) Global plane with b = .25 b) Wingtip region expanded 
with B = .25 

c) Global plane with b = .45 d) Wingtip region expanded 
with = .45 

Fig. 16 
reduced by 4 in J-direction. 

Planes at i = 77 for w = 1.0 for ALBTFI 

gence of the elliptic PDE solver is improved, and the 
quality of the grid is improved. The interior control 
that was marginally provided by the T&M hybridiza- 
tion is replaced with the bi-linear interpolation of the 
angle controls in the ALBTFI approach. The results 
presented have shown the ALBTFI to provide better 
grid quality in less time, evident by both a 50% reduc- 
tion in the iterations required to obtain a converged 
solution by comparison to the hybrid approach, and 
the ability to obtain a converged solution on a com- 
plex vehicle. The success of the ALBTFI scheme is 
attributed to the interaction between the system of 
implicit source terms, the incorporation of exponential 
decay functions, and the Trans-Finite Interpolation 
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a) Global plane with @ = .25 b) Wingtip region expanded with @ = .25 

c )  Global plane with B = .45 d) Wingtip region expanded with p = .45 

Fig. 17 Planes at j = 297 for w = 1.0 for ALBTFI reduced by 4 in I-direction. 

blending scheme. By tailoring the interpolation func- 
tions to the types of source terms in use, coupled with 
the advantages of the implicit source terms, the best 
blending scheme results. 

dynamics, Aerothermodyhamics, and Acoustics Com- 
petency at NASA Langley Research Center. 
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